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Abstract
A generic chaotic eigenfunction has a non-universal contribution consisting of
scars of short periodic orbits. This contribution, which cannot be predicted
by a model of random universal waves, survives the semiclassical limit (when
h̄ goes to zero). In this limit, the sum of scarred intensities only depends
on η ≡ (f − 1)

(∑
λ2

i

)1/2/
hT , with f the degrees of freedom, {λi} the set of

positive Lyapunov exponents and hT the topological entropy. Moreover, taking
into account that relative fluctuations of the scarred intensities tend to zero as
1/|ln h̄|, we are able to provide a detailed description of a generic chaotic
eigenfunction in the semiclassical limit. Our conclusions were verified in the
Bunimovich stadium billiard.

PACS numbers: 05.45.Mt, 03.65.Sq

1. Introduction

Berry [1] and Voros [2] proposed a semiclassical description of chaotic eigenfunctions by
considering the surface of constant energy as the unique classical invariant able to support them.
This guess should be right if the time required for the definition of individual eigenfunctions
was infinite. However, the required Heisenberg time TH is finite for finite values of h̄, even
though it tends to infinity in the semiclassical limit (SL).

It is worth emphasizing that fluctuations in the Berry–Voros description tend to infinity
in the SL (when h̄ goes to zero). But this statement demands an explanation because in the
literature it is usual to find expressions like ‘ . . . this description is supported by the Shnirelman
theorem’. For instance, the peaks of a Husimi function are distributed in phase space according
to the classical ergodic measure, being the heights of the peaks order |ln h̄| with respect to this
measure [3]. Nevertheless, taking into account that the width of these peaks is of order

√
h̄, a
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classical smoothing1 is sufficient for avoiding out fluctuations in the SL. In this context, the
Shnirelman theorem [4] can be expressed as follows: a classical smoothing is sufficient for
the elimination of fluctuations of generic chaotic eigenfunctions in the SL.

It is clear that in order to study the SL of individual chaotic eigenfunctions, it is necessary to
deal with fluctuations. Therefore, the following question arises: are fluctuations independent
of the used representation? The Husimi function describes fluctuations on the basis of coherent
states. This basis is universal in the sense that it does not contain dynamical information of
the system and consequently, it can be used in all systems. On the other hand, a basis with
dynamical information is evidently non-universal; for instance, a basis with information of the
structure of periodic orbits (POs). This basis is certainly motivated by a lot of previous works
about the structure of chaotic eigenfunctions.

In 1983, the influence of short POs on the structure of some chaotic eigenfunctions of
the Bunimovich stadium billiard was noted [5]. In 1984, Heller [6] demonstrated that the
shortest POs are able to leave scars on some chaotic states. After that, scars were considered
within the framework of the periodic orbit theory by making an energy average over a large
number of eigenfunctions [7]; this approach provides information about mean properties of
the so-called scar phenomenon but eliminates fluctuations. Then, resumation techniques have
been applied in order to deal with individual eigenfunctions [8]; nevertheless, the method
requires the computation of an enormous number of POs (which increases exponentially with
TH), preventing a transparent, simple and detailed description of the phenomenon.

Recently, we have observed in the stadium billiard that a basis of wavefunctions living
along short POs is naturally embedded in the set of eigenfunctions [9]. Based on that
observation, a semiclassical theory of short POs was proposed [10, 11], where the number
of required orbits increases at most linearly with TH. In this framework, an eigenfunction is
represented by a superposition of wavefunctions living in the neighbourhood of short POs, the
so-called scar functions in [12]. Then, the essential idea is to replace long POs, used in the
standard periodic orbit theory, by an interaction between pairs of short POs. By interaction
we mean Hamiltonian matrix elements between scar functions.

Our aim in this paper is to study the SL of chaotic eigenfunctions in the representation
of scar functions, and its comparison with the corresponding description in terms of universal
bases. Starting with the mean properties of a scar function over a large number of
eigenfunctions, we study its action on individual eigenfunctions within a statistical model.
The interaction is indirectly included through its action on the set of amplitudes on the basis
of scar functions; specifically, amplitudes will be random variables compatible with the mean
properties and the interaction. Then, we evaluate the highest intensities (the square modulus
of the amplitudes) which cannot be predicted by a universal description. As a result of this
analysis, we conclude that the sum of such intensities survives the SL. Finally, we check our
conclusions in the Bunimovich stadium billiard.

2. A statistical connection between the scar function basis and the set of eigenfunctions

Scar functions are the objects on which we focus our attention. A scar function is a
wavefunction which uses dynamical information in the vicinity of a PO up to the Ehrenfest
time; its semiclassical construction is explained in [12]. Let γ be a PO of the system with
period Tγ and the Lyapunov exponent λγ , and let φγ be the corresponding scar function with

1 By classical smoothing we refer, for instance, to a Gaussian smoothing where the dispersion of the used Gaussian
function is of the order h̄0.
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Bohr–Sommerfeld (BS) energy Eγ .2 Moreover, let {ϕµ} be the set of normalized
eigenfunctions of the system with eigenenergies Eµ. Mean properties of φγ in the spectrum
are characterized, through the intensities Iµ ≡ |〈ϕµ|φγ 〉|2, by the following relations [12]:∑

µ

Iµ = 1 + O(h̄)
∑

µ

EµIµ = Eγ + O(h̄)

and

σγ ≡
√∑

µ
(Eµ − Eγ )2Iµ = �h̄λγ

2
+ O(h̄2) (1)

where � = 2π/|ln h̄| + O(|ln h̄|−2). This means that φγ is highly localized in a range order σγ

around Eγ .
Equation (1) only works for Hamiltonian systems with two degrees of freedom, but the

generalization to f degrees of freedom is simply obtained in leading order by substituting λγ

for
(∑

λ2
γ,i

)1/2
, where {λγ,i} is the set of f − 1 positive Lyapunov exponents of γ .3 With this

substitution, the leading order of the energy dispersion, where 1/|ln h̄| is the small parameter,
results

σγ � πh̄

|ln h̄|
(∑

λ2
γ,i

)1/2
. (2)

We emphasize that scar functions are constructed by requiring minimum energy dispersion; in
this respect, equation (2) provides the minimum dispersion compatible with a structure living
in the vicinity of γ . The most striking characteristic of σγ is the logarithmic dependence on h̄

that reveals, in fact, the relation of the scar function with the Ehrenfest time.
A detailed numerical analysis in the stadium billiard [14] shows that the mean value of

the intensities, in a range order h̄3/2 4 around the energy E, is given by a Gaussian function
of E − Eγ . Moreover, the intensities fluctuate around the mean value following a chi-square
distribution with one degree of freedom [15]. We believe that the Gaussian behaviour is
related to the mixing property of chaotic systems [13] and consequently of general validity.
For this reason we propose the following expression for the mean value of the intensities as a
function of E:

I (E) = exp
[−(E − Eγ )2

/
2σ 2

γ

]
√

2πn
(3)

where

n ≡ σγ ρE = O(h̄1−f /|ln h̄|) (4)

is the number of eigenenergies contained in one energy dispersion range, and ρE = O(h̄−f )

is the energy density5. Furthermore, fluctuations being one of the quantum manifestations of
chaos, we hope that intensities of general chaotic systems also fluctuate following a chi-square
distribution. Below, we incorporate this guess through a random wave hypothesis.

2 The BS energies of a PO satisfy the relation S/h̄ − µπ/2 = 2nπ , where n is an integer, S is the dynamical action
along the PO and µ is the Maslov index.
3 After a canonical transformation, the transverse motion can be locally described by the hyperbolic Hamiltonian∑

λγ,ipiqi . Then, each conjugated plane piqi provides an independent contribution to σ 2
γ , given in leading order by

(πh̄λγ,i/|ln h̄|)2.
4 This range contains a large number of eigenenergies but at the same time it is much smaller than σγ .
5 Note that I (E) is normalized by the relation

∫
I (E)ρE dE = 1.
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2.1. Scar functions in the basis of eigenfunctions

In what follows, we study the intensities of φγ within a statistical model, being the main purpose
to estimate their mean values and dispersions, and to provide a range in the spectrum where they
can be found. The implicit assumption is that φγ = ∑〈ϕµ|φγ 〉ϕµ looks like a random wave;
that is, amplitudes are independent Gaussian distributions with zero means, satisfying global
properties imposed by equation (3). Moreover, as we will develop a formalism of individual
intensities in terms of the small parameter 1/|ln h̄|, corrections depending algebraically on h̄

result irrelevant6. We start by noting that an intensity is characterized by its height I and its
position E in the spectrum. With the change of variable ε ≡ (E − Eγ )ρE , equation (3) takes
the form

I (ε) = exp[−ε2/2n2]√
2πn

. (5)

In this way, the statistical model only depends on the parameter n. The position satisfies a
uniform distribution in the range −N/2 < ε < N/2, where N is the number of intensities of
φγ ; the precise value of N is irrelevant and we only require that N > n|ln h̄|. Moreover, the
height I at a given position ε satisfies a chi-squared distribution with β degrees of freedom
and mean value I (ε); for systems with (without) time reversal symmetry, β is equal to 1 (2).
Then, an individual intensity is described by the following probability density:

p(I, ε) = χ [I/I(ε)]

NI(ε)
(6)

where χ is a chi-square probability density with β degrees of freedom and mean value unity7.
We would like to evaluate, in first place, the heights of the highest intensities independent

of their position in the spectrum. To do this simply, we integrate equation (6) on the random
variable ε

p(I) =
∫ N/2

−N/2
p(I, ε) dε.

Then, the set of intensities of φγ is taken into account by N independent random variables with
common probability density p(I).8 Let x1 be the greatest of the intensities, x2 be the second
one and so on; that is, we arrange the set of intensities in an order of magnitude. Following
the general method described in chapter 28 of [16], we obtain expressions for the mean value
and dispersion of xj

9

xj =
√

2

π

ln(n/j)

βn

[
1 + O

(
1

ln(n/j)

)]
(7)

σxj
=

√
2

π

aj

βn

[
1 + O

(
1

ln(n/j)

)]
(8)

6 For this reason, even though the energy density in a range order σγ has relative variations order h̄, we simply take
the constant value ρE .
7 χ(x) = �(β/2)−1(βx/2)β/2−1(β/2)e−βx/2, with �( ) the Gamma function.
8 N independent random variables with common probability density p(I, ε) provide a Poisson energy level spacing
distribution, being fluctuations O(N−1/2) = O(h̄(f −1)/2). However, fluctuations are O(h̄f ) as a consequence of
the strong rigidity of chaotic spectra. In this respect, the integration along the energy axis eliminates fluctuations,
providing a better description of the actual situation. Any way, differences among the previous possibilities depend
algebraically on h̄; so, they are all equivalent in our model.
9 Actually, for β = 1, the error in equation (7) is of the order [ln ln(n/j)]/ ln(n/j).
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Figure 1. Linear Husimi density plots of (a) the state number 141 755 of the desymmetrized
stadium billiard with radius 1 and area 1+π/4, (b) its non-universal contribution consisting of nine
scar functions, and (c) its universal contribution given by 819 plane waves. Finally, it is displayed
the set of scarred intensities (dots) and the theoretical curves xj ± σxj

; horizontal line shows the
value η/n of the highest universal intensity.

with

aj ≡
(

π2

6
−

j−1∑
i=1

1

i2

)1/2

= 1 + 1/4j + O(j−2)√
j

.

Precise expressions for xj , with the remainder O(ln(n/j)−4), and σxj
can be found in

[14]. These expressions are required for checking experimental data because, for instance,
ln n � 3.8 in the very high energy region of figure 1. With respect to equation (7), we
point out that (i) the dependence on the ratio n/j is a consequence of the arrangement of the
intensities, (ii) the logarithmic dependence and the factor β are related to the asymptotically
exponential behaviour of χ , (iii) the factor

√
2/π depends on the selected Gaussian function in

equation (3) and (iv) the factor n normalizes the sum of intensities to unity. Moreover, it is
evident from equations (7) and (8) that relative fluctuations of the intensities tend to zero in
the SL

σxj
/xj ∼ 1/ln n ∼ 1/|ln h̄|. (9)

This result is a consequence of the arrangement of the intensities and the asymptotically
exponential behaviour of χ .
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Second, we would like to know where the intensity xj can be found in the spectrum. From
equation (9), xj � xj in leading order, so the probability density of finding xj near ε is given
(in leading order) by

pj (ε) � p(xj , ε)∫ N/2
−N/2 p(xj , ε′) dε′

.

A straightforward calculation of this equation shows that the position Ej of xj is described by
a distribution (Gaussian in the SL) with mean value Eγ and dispersion

σEj
= σγ√

ln(n/j)
[1 + O(1/ln n)]. (10)

This means that the highest intensities of φγ tend to Eγ quicker than σγ goes to zero.
Moreover, σEj

/Eγ tends to zero as |ln h̄|−3/2, where Eγ = 2πh̄/Tγ is the distance between
consecutive BS energies of γ . Below, we will see that xj is always a scar for sufficiently
small values of h̄. Accepting this fact, equation (10) imposes a necessary condition of the BS
quantization type for scarring; that is, scars of γ accumulate in the vicinity of Eγ in the SL.

2.2. Eigenfunctions in the representation of scar functions

So far, we have described scar functions on the basis of eigenfunctions. Now, we show that
the representation of eigenfunctions on the basis of scar functions has essentially the same
description as in the SL. Let E be an energy living in the extreme semiclassical region; this
means that |ln h̄| � 1 when the energy is measured in units of E and the time in units of
h−1

T , where hT is the topological entropy10. Let {φγ } be the set of scar functions of short POs
with BS energies near E (in appendix B, the concept of short PO is precisely established).
This set defines a very distinctive basis of wavefunctions in order to describe eigenfunctions
in the vicinity of E. First, the elements of this basis are strongly localized in energy (see
equation (2)). Second, this basis is quasi-orthogonal. The maximum overlap between scar
functions is of the order 1/|ln h̄|, but most of the overlaps are of the order h̄1/2;11 in fact,
the fraction of overlaps of the order 1/|ln h̄| goes to zero in the SL. Third, the density of BS
energies is equal to ρE because we incorporate POs up to this condition is satisfied [10].

From the second and third properties we arrive at the conclusion that the set of scar
functions is a complete basis. Moreover, by quasi-orthogonality

ϕµ =
∑

cµ,γ φγ (11)

with

cµ,γ = 〈φγ |ϕµ〉[1 + O(h̄1/2)] (12)

and where the number of relevant terms is of the order h̄1−f /|ln h̄| in accordance with
equation (4). Therefore, the same statistical description works by using

σ 2
µ ≡

∑
γ

|cµ,γ |2(Eµ − Eγ )2

in place of σ 2
γ .

10 The number of primitive POs with period less that T is given by ∼exp(T hT )/T hT . So, h−1
T is of the order of the

shortest periods.
11 This result is derived in [13] for the f = 2 case. We believe that for higher degrees of freedom the overlap goes
quickly to zero, possibly as h̄(f −1)/2. However, as the precise dependence with h̄ is not relevant to our discussion, we
retain the upper bound h̄1/2.
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We can obtain an estimation of σµ from the following relations:

σ 2
µ = 〈

σ 2
µ

〉
[1 + O(h̄(f −1)/2)]〈

σ 2
µ

〉 = 〈
σ 2

γ

〉
[1 + O(h̄1/2)]〈∑

i

λ2
γ,i

〉
=

∑
i

λ2
i + O(1/|ln h̄|)

where {λi} is the set of f − 1 positive Lyapunov exponents of the system. The first of these
equations means that fluctuations of σ 2

µ are very small, being its mean value a good estimation;
this result is simply obtained by assuming that equation (11) looks like a random wave. The
second equation is a direct consequence of (12). With respect to the third equation, we note
that according to the exponential proliferation of POs with the period, the mean value on
the lhs is dominated by POs with the longest periods. Then, as the dispersion of λγ,i around
the mean value λi is of the order T

−1/2
γ , where Tγ = O(|ln h̄|) for the longest periods, the third

equation results.
Using the previous observations and equation (2), the typical dispersion of eigenfunctions

on the basis of scar functions is given by

σ �
√〈

σ 2
γ

〉 � πh̄

|ln h̄|

(〈∑
i

λ2
γ,i

〉)1/2

� πh̄

|ln h̄|

(∑
i

λ2
i

)1/2

. (13)

In conclusion, using σ in place of σγ , equation (4) provides the relevant number of scar
functions contributing to each eigenfunction. The intensities of an eigenfunction on the basis
of scar functions have mean value and dispersion given by equations (7) and (8), and those
POs with probability of having intensity xj are limited by equation (10).

We have used a random wave hypothesis to connect the bases of eigenfunctions and
scar functions. This assumption is justified, in our opinion, because eigenfunctions and scar
functions are of different nature. While a scar function is localized in the vicinity of a PO, an
eigenfunction fills the surface of constant energy according to Shnirelman [4]. With this in
mind, we expect that all the coefficients in equation (11) are a priori equiproblable, while the
knowledge of one of them should not provide any information about the others12. Another
justification, without invoking the Shnirelman theorem, is based on some knowledge of the
interaction between scar functions. According to [13], the quantity ρEHγ,δ , where Hγ,δ is a
typical non-diagonal Hamiltonian matrix element between scar functions, tends to infinity in
the SL; that is, perturbation theory cannot be applied at all. Moreover, the precise value of
each matrix element depends, in a very sensitive way, on classical invariants related to pairs of
orbits; we might think about uncorrelated elements. So, it is reasonable to assume that after
diagonalization, the amplitudes 〈ϕµ|φγ 〉 are described by independent Gaussian distributions
with zero means [15].

3. The scar phenomenon

In the following, we will compare the intensities of an eigenfunction on the basis of scar
functions, with those resulting from a universal description. According to appendix A, we

12 The opposite situation appears when two bases are connected by the perturbation theory, where a random wave
hypothesis evidently does not work. If the elements of one basis are related to quantized tori, the elements of
the perturbed basis are also related to tori (the perturbed ones). If the elements of one basis consist of chaotic
eigenfunctions, the perturbed basis also contains chaotic eigenfunctions associated with the perturbed Hamiltonian.
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need Nu universal waves for representing ϕµ, all of them with mean energy Eµ.13 In this
case, intensities are only characterized by their heights; therefore, the probability density of
an individual intensity results

pu(I) = χ(I/I)

I

where I = 1/Nu is the mean value of the intensities. Later on, the set of universal intensities
of ϕµ is described by Nu independent random variables with common probability density
pu(I). Using again the method of [16], the mean value of the greatest intensity results

I (u) = 2 ln Nu

βNu

[1 + O(1/ ln Nu)]. (14)

Moreover, relative fluctuations go to zero with 1/|ln h̄|.
Let Iγ be a so strong intensity of ϕµ that it cannot be predicted by a model of random

universal waves; that is, I (u) < Iγ . This condition reveals that γ plays a distinctive role in the
structure of ϕµ; according to Heller [6, 17], we say that ϕµ is scarred by γ . In what follows,
we study how many intensities satisfy this condition, and more importantly, whether the sum
of these intensities provides a relevant contribution to ϕµ in the SL. To reduce the number of
variables playing a role in the discussion, we note that βnI (u) converges to a classical invariant
in the SL. Using equation (14), then (4) (with σ in place of σγ ) and finally equations (13) and
(A.1), it results

βnI (u) � n
2 ln Nu

Nu

� σρE

2 ln Nu

Nu

� η

where

η ≡ (f − 1)
( ∑

λ2
i

)1/2

hT

. (15)

Hence, we can rewrite the previous condition as

η < βnIγ ‘scarring condition’. (16)

We emphasize that βnI (u) = O(h̄0) because two effects of different nature cancel each
other. First, the factor ln Nu (which is O(|ln h̄|)) is a direct consequence of the random wave
hypothesis. Second, the factor n/Nu is of the order 1/|ln h̄| because the basis of scar functions
incorporates the dynamics up to the Ehrenfest time. Let us go to analyse the consequences of
this cancellation.

Using equations (7) and (9), the scarring condition takes the form

η = O(h̄0) < βnxj � βnxj ∼ ln(n/j). (17)

Note that the last relation is valid for j 	 n; in the other case, we have to replace the
logarithmic function, by some other function of the same argument n/j . Then, fixing j ,
we see that xj always satisfies the scarring condition in the SL because ln(n/j) ∼ |ln h̄|.
Moreover, xj is very strong in comparison with I (u) (xj /I

(u) ∼ |ln h̄|). On the other hand, a
lot of intensities verify this condition. The number nscar of intensities satisfying the scarring
condition is of the order n, because an argument n/nscar (in equation (17)) must be of the
order h̄0.14 Therefore, taking into account that the sum of all the intensities (where

∑
xj = 1)

13 Mean energies of scar functions are the corresponding BS energies; however, in the case of universal waves such
dynamical restriction does not exist.
14 For nscar/n 	 1, nscar/n depends exponentially on η.
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contains a number of order n of relevant terms, the first nscar terms (the greatest ones) provide
a finite contribution. For instance, when nscar/n 	 1, we can use equation (7) to obtain

nscar∑
j=1

xj ∼
nscar∑
j=1

ln(n/j)

n
� nscar

n
ln(n/nscar).

We remark again that this result is a direct consequence of the use of scar functions and the
random wave hypothesis; see comment after equation (16).

The previous analysis only uses the order of magnitude of the scarring condition; however,
to obtain nscar/n and the sum of scarred intensities in leading order, we have to consider
equation (16) strictly (this relation includes two assumptions: the Gaussian behaviour proposed
in equation (3) and equation (A.1)). The evaluation of these quantities for arbitrary η is
cumbersome; nevertheless, starting with expansions around η = 0 and η = ∞, interpolation
formulae are derived in [14]. For the β = 1 case, corresponding to the stadium billiard, they
are given in terms of η̃ ≡ √

π/2η by

nscar

n
� e−η̃

√
8 ln(1 + 1/η̃δ)

(1 + 4η̃/δ)
(18)

where δ = (9 +
√

73)/2, and

nscar∑
j=1

xj � 2√
π

e−η̃ −
(

2√
π

− 1

)
e−2η̃. (19)

These formulae provide mean values of the quantities, while their dispersions are order of the
1/

√
n. The accuracy of these expressions was checked with numerical experiments; note that

the statistical model depends on the parameters η and n, and the previous equations correspond
to the limit n → ∞.

Now, we compare the results derived in the paper with the data obtained from a realistic
system. Figure 1 shows the decomposition of an extremely excited eigenstate, ϕ, of the
desymmetrized Bunimovich stadium billiard with radius 1 and area 1 + π/4. Figure 1(a)
displays the Husimi function of the state number 141 755, plotted in configuration space in [12].
We have evaluated its intensities on the basis of scar functions and also on the basis of plane
waves; see [18] for the construction of scar functions in the stadium billiard. The highest
scarred intensity is around five times greater than the highest intensity on the basis of plane
waves, the ratio being of the order of ln n � 3.8. On the other hand, nine intensities of
short POs satisfy the scarring condition, while equation (18) predicts nscar � 8.5. Moreover,
the sum of scarred intensities is 0.38 in good agreement with equation (19), which predicts
�0.33.15 Figure 1(b) shows the Husimi of the scarred contribution ϕscar, where

ϕscar ≡
∑
scars

〈φγ |ϕ〉φγ

and figure 1(c) displays the Husimi of ϕ −ϕscar. We also plot the scarred intensities |〈φγ |ϕ〉|2,
arranged by height, and the theoretical curves xj ± σxj

, observing a nice agreement16. At lower
energies, we studied a series of 100 and 60 consecutive eigenfunctions around the states number
1500 and 5700, respectively; of course, we have rejected bouncing ball eigenstates. The

15 We are unable to provide precise analytical values because, at present, there are only poor estimations for the
topological entropy of the stadium billiard.
16 We used precise expressions for xj and σxj

, derived in [14].
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selected energy regions satisfy, according to equation (18), nscar = 1 and 2, respectively. Then,
we evaluated the highest intensities on the basis of scar functions of short POs, obtaining the
following main results: 〈x1〉 = 0.335±0.009 in the first region, and 〈x1 +x2〉 = 0.326±0.008
in the second one17. Here, 〈 〉 indicates mean value in the corresponding series of
eigenfunctions. A detailed analysis of the data will be given elsewhere, but it is a clear
remarkable agreement with the theory.

4. Conclusions

In conclusion, scar functions define a distinctive basis for the representation of chaotic
eigenfunctions. In this representation, a generic chaotic eigenfunction is scarred by a particular
set of short POs; this set characterizes the state. The number of elements in this set is given
by equation (18), while the sum of their intensities survives the SL (see equation (19)).
The scarred intensities have mean values and dispersions given by equations (7) and (8),
respectively. Moreover, relative fluctuations being null in the SL (see equation (9)), mean
values of the intensities provide a detailed description of chaotic eigenfunctions in this limit.
With respect to the influence of a particular PO in a given energy range, equation (10) imposes
a necessary condition of the Bohr–Sommerfeld quantization type for scarring.

These unexpected results are a consequence of the fact that scar functions incorporate the
dynamics up to the Ehrenfest time. In contrast, by using wavefunctions of width order

√
h̄

around the POs, for instance the so-called vacuum states in [12], the situation is completely
different. The number of required elements on the basis of vacuum states is of the order
h̄1−f , like it is for universal bases. So, the condition I (u) < Iγ is verified only eventually,
with greater probability by those POs with smaller Lyapunov exponents. For this reason, by
using vacuum states, the scar phenomenon results exceptionally in the SL. At low energies, it
appears clearly in favourable situations [19], while there are serious doubts about its existence
in other ones [20].

Finally, we would like to state some remarks.

(a) Using a random wave hypothesis, we conclude that the sum of scarred intensities of a
generic chaotic eigenfunction survives the SL. Moreover, by accepting equations (3) and
(A.1), we obtain its limiting value.

(b) Numerical results in the stadium billiard demonstrate that, even though the statistical
model is derived in the extreme semiclassical limit, the obtained conclusions are of
remarkable validity at low energies.

(c) Relative fluctuations of the intensities tend to zero in the SL (see equation (9)); however,
it should be clear that at low energies they are very important. For this reason, the
phenomenon of localization on short POs can be very strong for some eigenfunctions at
low energies.

(d) A scar function is not able to support an eigenfunction in the SL because ρEσγ � 1, where
ρE = O(h̄−f ) and σγ = O(h̄/|ln h̄|). Actually, the right strong localization condition
should be ρ̃Eσγ < 1, where ρ̃E is the density of energy levels. Suppose, there is a
chaotic system with a so strong spectral degeneracy that ρE � ρ̃E = O(|ln h̄|/h̄); in this
case, a scar function is able to satisfy the strong localization condition. This non-generic
situation appears exceptionally in cat maps [21].

(e) We can derive general conclusions about the phenomenon of localization on short POs,
because it is governed by the classical invariant η. For instance, taking into account that
the sum of scarred intensities is a decreasing function of η (see equation (19)), while η

17 The error of 〈x〉 is given by σx/
√

Neig, where Neig is the number of eigenfunctions in the corresponding series.
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increases with f ,18 we conclude that this localization is stronger in systems with few
degrees of freedom.
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Appendix A

We will discuss how many independent universal waves participate in the description of chaotic
eigenfunctions; this point is relevant in order to obtain a quantitative criterion for scarring.
For us, universal waves are suitable wavefunctions without information about the structure of
POs of the system, for instance plane waves are universal waves in billiards.

In order to solve the question, we have to find a characteristic time, describing the
transition from universal to non-universal evolutions. At first, there are several possibilities.
For instance, we can use the period T1 of the shortest PO, because it is impossible to extract
information about the structure of POs from evolutions shorter than T1. Nevertheless, T1

only provides information about a very limited region of phase space, while the required time
should be the result of a deep knowledge of the system. For this reason, we propose the
inverse of the topological entropy for this time. That is, a classical invariant of the order of
the shortest POs, which further defines the proliferation of POs as a function of the period.

Then, taking into account that an eigenfunction is defined after an evolution for a time
TH, by considering this evolution in stages of time h−1

T , where each one establishes a universal
wave, the number of independent universal waves results

Nu � THhT = 2πh̄ρEhT = O(h̄1−f ). (A.1)

We will try to justify the plausibility of this equation, and clarify the meaning of
independent universal waves. Let us consider for example, the Sinai billiard; a square of
side unity with an interior circle of radius R. From the classical point of view, it is possible to
analyse the motion with Birkhoff coordinates on the boundary of the square, or equivalently on
the boundary of circle. The corresponding surface of sections provides the same information,
but their areas are different A = 8p for the square, while A = 4πRp for the circle ( p is
the modulus of the momentum of the particle). Such a discrepancy is very relevant at the
quantum level because for the evaluation of eigenfunctions, we need a basis of N � A/2πh̄

wavefunctions associated with the section. For instance, by considering the surface of section
related to the square, we use the following suitable set of wavefunctions with defined wave
number k:19

ψl(r, θ) = [alJl(kr) + blYl(kr)] eilθ for l = 0,±1, . . . ,±L � 2k/π.

Jl and Yl are Bessel and Neumann functions of order l, respectively, and the coefficients al and
bl are selected in order to satisfy boundary conditions on the circle. Using the same idea for the
other surface of section, we have to find wavefunctions, with defined wave number, satisfying
boundary conditions on the square; the construction of such wavefunctions is explained
in [22].
18 Assuming that hT ∼ ∑

λi, η results an increasing function of f independently of the distribution of Lyapunov
exponents.
19 Polar coordinates take the origin at the centre of the circle.
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For R = O(1) the two bases are comparable because N � 4k/π for the square, while
N � 2Rk for the circle. However, it is evident that as R → 0 the first basis turns into very
inefficient with respect to the second optimal one. In such a situation, the set {ψl} must be
strongly correlated and consequently, the representation ϕ = ∑〈ψl |ϕ〉ψl of eigenfunctions
cannot be naively described by a random wave.

Finally, equation (A.1) predicts

Nu � LHh̃T = (1 − πR2)kh̃T

where LH is the Heisenberg length, and h̃T is the topological entropy per unit length. With
respect to h̃T , it does not exist to our knowledge an evaluation of this quantity as a function
of R. However, the rough estimate h̃T ∼ λ̃ � 4R ln(1/R), where λ̃ is the Lyapunov exponent
per unit length, suggests that equation (A.1) provides the main behaviour of the optimal basis.

In conclusion, equation (A.1) attempts to obtain the minimum number of universal waves
required for the representation of chaotic eigenfunctions. In this way, we can speak of
independent waves and therefore, a random wave description results reasonable.

Appendix B

This appendix does not provide relevant results for the development of the paper; however,
it helps to clarify some properties of the set of short POs used to construct the scar function
basis. In particular, we establish the short PO condition.

The first requirement of the set of short POs is that the density of BS energies equalizes
ρE [10]. ργ � Tγ /2πh̄ being the density of BS energies of γ , the condition

∑
γ ργ � ρE

immediately results

T1 + T2 + · · · + TNpo � TH (B.1)

where T1 is the period of the shortest PO, T2 is the period of the next one and so on. Here, we
arrange the periods in order of magnitude, and select the first Npo POs. This criterion appears
reasonable as a first approach; however, we will see below that asymptotic arguments provide
a better one.

The period TNpo of the longer short PO is evaluated as follows:

T1 + · · · + TNpo �
∫ TNpo

T1

Tρ(T ) dT ∼
∫ TNpo

T1

ehT T dT � ehT TNpo

where ρ(T ) ∼ ehT T /T is the density of POs with period T. Therefore, taking the logarithm in
equation (B.1), it results

hT TNpo � (f − 1)|ln h̄|. (B.2)

A direct application of the last relation provides the following short PO condition:

Tγ < TNpo � (f − 1)|ln h̄|/hT (B.3)

where the relative error on the rhs is of the order 1/|ln h̄|. To reduce this error, we note that
σ/h̄ ∼ 1/|ln h̄| (see equation (13)). Then, we change slightly the condition as follows:

Tγ σγ /h̄ < TNpoσ/h̄.

Hence, with the help of equations (13), (15) and (B.2), we see that the rhs takes a finite limiting
value

Tγ σγ /h̄ < πη ‘short PO condition’. (B.4)

The obvious advantage of this condition, with respect to equation (B.3), is that all quantities
can be obtained, in principle, with high accuracy.
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As a bonus, it is worth emphasizing that by using the short PO condition proposed in
equation (B.4), all isolated POs of the stadium billiard are considered on the same footing,
including the whispering gallery family and the POs near the bouncing ball region. For
instance, taking into account that the whispering gallery family accumulates at a finite period
Tw.g, it is obvious that the condition Tγ < TNpo incorporates this infinite set of POs when Tw.g

satisfies Tw.g < TNpo . In contrast, as σγ increases with λγ , and λγ increases logarithmically
with the number l of bounces with the circle, it is clear that equation (B.4) introduces a cut-off
to the admitted POs of this family. As λγ Tw.g � 2 ln l [23], it results from (B.4) that the number
of POs of this family is O(l) = O(h̄−η/2). Assuming that η � 1 for the stadium billiard, the
number of POs agrees with the number of states in the region. In Birkhoff coordinates, the
whispering gallery region is of the order h̄1/2; so the number of states in this region is of
the order h̄−1/2.

For orbits near the bouncing ball region, we have another situation. Bouncing ball
eigenstates cover a band of width O(h̄1/2) around p = 0; see the white band in figure 1(a).
Near this band but in the chaotic region, POs have very large periods of the order h̄−1/2; so,
these orbits do not satisfy equation (B.3). This problem is solved by using equation (B.4)
because λγ Tγ � ln l � |ln h̄|/2, where l is the number of bounces with the straight line.

We would like to note that the set of short POs should be distributed in phase space
according to the classical ergodic measure. This implicit assumption is related to the way
in which eigenfunctions fill phase space, because the most economic basis for representing
eigenfunctions should be in terms of structures distributed according to the same rule. In this
respect, equation (B.4) has demonstrated to be very efficient for avoiding serious pathologies
associated with nonhyperbolic systems. For this reason, we hope that this condition yields a
suitable PO covering of phase space for very general chaotic systems.

References

[1] Berry M V 1977 J. Phys. A: Math. Gen. 10 2083
[2] Voros A 1976 Ann. Inst. Henri Poincaré A 24 31
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